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Abstract
This paper studies the application of the structure theory of infinite-dimensional
pseudo-groups to computing symmetries of differential equations. The main
tool is a combination of Cartan’s method of equivalence and the moving
coframe method introduced by Fels and Olver. Our approach does not require
a preliminary computation of infinitesimal defining systems, their analysis
and integration, and uses differentiation and linear algebra operations only.
Examples of its main features are given.

PACS numbers: 02.20.Qs, 02.20.Tw, 02.30.Jr

1. Introduction

The theory of symmetries of differential equations (DEs) was created by Sophus Lie more
than a 100 years ago. One of Lie’s greatest contributions was the discovery of the connection
between continuous transformation groups and their infinitesimal generators, which allows
one to reduce complicated nonlinear invariance conditions of DEs under the action of
a transformation group to much simpler linear conditions of infinitesimal invariance—
defining equations of symmetry algebra. Lie’s method turned out to be a powerful tool
for studying differential equations, finding their exact solutions, conservation laws, etc
[1, 4, 13–15, 18, 19, 29, 30]. It requires integration of the (over-determined) system of
defining equations to find a symmetry group admitted by DEs explicitly. In the last decade,
methods which do not use integration but rather extract information about the structure of
symmetry groups directly from their infinitesimal defining systems were developed by Reid
and Schwarz, [23, 24, 27, 28]. It was shown how to calculate the dimension of the finite Lie
group, and in [23, 24] it was also shown how to find the structure constants of the symmetry
algebra in the finite-dimensional case. In [16, 17] the method of [23, 24] was generalized to
the case of structurally transitive infinite Lie pseudo-groups. Specifically, it was shown how
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to obtain the Cartan structure equations of the symmetry pseudo-group admitted by a system
of DEs from its infinitesimal defining equations.

Élie Cartan’s theory of infinite Lie pseudo-groups [5–9] does not use infinitesimal methods
and is based on the possibility of characterizing an infinite Lie pseudo-group on a manifold M
as the set of projections of bundle transformations on a principal fibre bundle M × G → M ,
where G is some Lie group, that preserve a collection of 1-forms ϑi onM × G. The equations
that express the differentials dϑi through the ϑi and modified Maurer–Cartan forms µα of the
group G,

dϑi = Aiαjµ
α ∧ ϑj + T ijkϑ

j ∧ ϑk
are called Cartan structure equations; they include important information about the pseudo-
group (see, particularly, [20, theorem 11.16]).

In the present paper we apply Cartan’s method of equivalence, [9, 12, 20], and the moving
coframe method introduced by Fels and Olver, [10, 11], to computing invariant 1-forms of
a symmetry pseudo-group of partial differential equations. We treat the case when either
there are more than one dependent variable, or the order of DEs is greater than 1, since the
pseudo-group of contact transformations acts transitively on the set of partial differential
equations of the first order with a single dependent variable, [13, section 14.1]. The case of
ordinary differential equations is treated in [10, section 9]; see also [20, ch 12] and references
therein.

A system Rs of DEs of order s in n independent variables and m dependent variables
is locally considered to be the sub-bundle in the bundle J s(E) of s-jets of the bundle
E = R

n × R
m → R

n. A pseudo-group of symmetries Lie(Rs) of the system Rs is a
subgroup of the pseudo-group Lie(J s(E)) of contact transformations of the bundle J s(E) and
consists of those transformations which preserve the sub-bundleRs . So the problem of finding
the group Lie(Rs) is a particular case of the general problem of equivalence of embedded
submanifolds under the action of a pseudo-group, and the moving coframe method, [10, 11],
could be used for solving this equivalence problem.

Some simplifications are possible if we deal with the first-order systems of DEs. From
[22, theorem 3.3.1.] a system Rs is equivalent to the system R̂1 of first order, which is
the sub-bundle in J 1(Ê), where Ê = J s−1(E), and, from the theorem of [13, section 17.4],
the symmetry groups Lie(Rs) and Lie(R̂1) of the systems Rs and R̂1 are isomorphic. The
pseudo-group Lie(R̂1) is a subgroup of the pseudo-group Lie(J 1(Ê)). From Bäcklund’s
theorem [3], contact transformations on J 1(Ê) are prolongations of point transformations on
Ê . Cartan’s method of equivalence allows us to compute invariant 1-forms which define
the pseudo-group of contact transformations. Then we can find the invariant 1-forms of the
pseudo-group Lie(R̂1). To do that, we should take the following steps. First, we restrict the
invariant 1-forms of the pseudo-group Lie(J 1(Ê)) on the sub-bundle R̂1 and obtain the set
of linear dependent 1-forms. Next, we apply the procedure of normalization to the resulting
linear dependences among the restricted 1-forms. Finally, we apply the operations of Cartan’s
equivalence method to the restrictions on R̂1 of the structure equations of the pseudo-group
Lie(J 1(Ê)).

2. Invariant 1-forms and structure equations of the pseudo-group
of contact transformations

According to [22, theorem 3.3.1.] a compatible system Rs of DEs of order s is equivalent to
the system R̂1 of order 1, which has more dependent variables. So it is possible to restrict our
attention to the case of s = 1.
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Let R1 be a system of partial differential equations of first order, considered to be the
sub-bundle in the bundle J 1(E) of 1-jets of the bundle E → X over an n-dimensional base
manifold X, with q-dimensional fibres. Let (x1, x2, . . . , xn) denote the local coordinates of
the base X and (u1, u2, . . . , uq) denote the local coordinates of the fibres of E . Then the local
coordinates of the bundle J 1(E) are

(
x1, . . . , xn, u1, . . . , uq, p1

1, . . . , p
1
n, . . . , p

q

1 , . . . , p
q
n

)
,

and a local section f : X → E , defined by the equalities uα = f α(x), α ∈ {1, . . . , q}, has the
corresponding 1-jet j1(f ) : X → J 1(E), defined by the equalities uα = f α(x), pαi = ∂f α(x)

∂xi
,

α ∈ {1, . . . , q}, i ∈ {1, . . . , n}.
A differential form ϑ on J 1(E) is called a contact form if it is annihilated by all 1-jets:

j1(f )
∗ϑ = 0. In local coordinates every contact 1-form is a linear combination of the Cartan

forms ϑα = duα − pαi dxi , α ∈ {1, . . . , q} (here and later we use the Einstein summation
convention, so pαi dxi = ∑n

i=1 p
α
i dxi etc).

A local diffeomorphism � : J 1(E) → J 1(E), � : (x, u, p) 
→ (x̄, ū, p̄), is called a
contact transformation, if for every contact form ϑ , the form �∗ϑ̄ is also a contact form; in
other words, if �∗ϑ̄α = dūα − p̄αi dx̄i = ζ αβ (x, u, p)ϑ

β for some functions ζ αβ on J 1(E).
From Bäcklund’s theorem [3], in the case of n > 1 and q > 1 every contact transformation

� : J 1(E) → J 1(E) is a prolongation of a point transformation� : E → E ,� : (x, u) 
→ (x̄, ū),
where the functions p̄αi are defined by the equalities

∂ūα

∂xj
+
∂ūα

∂uβ
p
β

j = p̄αi

(
∂x̄i

∂xj
+
∂x̄i

∂uβ
p
β

j

)
. (1)

To obtain a collection of invariant 1-forms of the pseudo-group of contact transformations
on J 1(E), we apply Cartan’s equivalence method [9, 20]. For this purpose we consider the
coframe

{(
ϑα, dxi, dpαi

) ∣∣α ∈ {1, . . . , q}, i ∈ {1, . . . , n}} on J 1(E).A contact transformation
� acts on this coframe in the following manner:

�∗


 ϑ̄αdx̄i

dp̄αi


 = S


 ϑα

dxi

dpαi




where S : J 1(E) → G is an analytic function on J 1(E), taking values in the Lie group G of
non-degenerate block lower triangular matrices of the form


aαβ 0 0
Ciβ bij 0

Fαiβ Gα
ij h

αj

iβ


 .

In accordance with Cartan’s method of equivalence, we consider the lifted coframe on
J 1(E)× G
%α = aαβϑ

β &i = ciβ%
β + bij dxj (α

i = f αiβ%
β + gαij&

j + hαjiβ dpβj (2)

where for convenience we use the notations ciβ = CiγA
γ

β , f αiβ = Fαiγ A
γ

β − Gα
ijB

j

k c
k
β ,

gαij = Gα
ikB

k
j ;
(
Aβγ
)

is the inverse of the the matrix
(
aαβ
)
,
(
B
j

k

)
is the inverse of the matrix(

bij
)
, so aαβA

β
γ = δαγ and bijB

j

k = δik. To find an invariant coframe we use the procedure of
absorption and normalization of essential torsion coefficients [20, ch 10].

Taking exterior differentials of 1-forms %α and substituting the differentials duβ , dxj ,
dpβj expressed from equations (2), we obtain

d%α =
(

daαβA
β
γ + aαβB

j

kH
βs

jη

(
ckγ
(
(η
s − f ηsε%

ε − g
η

sl&
l
)− f ηsγ&

s
)) ∧%γ

+ aαβB
j

k H
βs

jη &
k ∧(η

s − aαβB
j

kH
βs

jη g
η

sl&
k ∧&l
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where the functions Hβk

jγ are defined by the conditions Hβk

jγ h
γ i

kα = δij δ
β
α . The multipliers of

&k ∧(η
s and &k ∧&l are essential torsion coefficients. We normalize them by the following

choice of the parameters of the Lie group G:

h
αj

iβ = aαβB
j

i (3)

gαij = gαji (4)

Then we have

d%α = 1α
β ∧%β + &k ∧(α

k (5)

1α
β = daαγA

γ

β + ckγ f
α
kβ%

γ − f αkβ&
k − ckβg

α
kj&

j + ckβ(
α
k . (6)

Now the exterior differentials of &i and (α
i become

d&i = 2i
k ∧&k +3i

γ ∧%γ (7)

d(α
i = 1α

γ ∧(γ

i −2k
i ∧(α

k +4α
iβ ∧%β +5α

ij ∧&j (8)

where

2i
k = dbijB

j

k − ciβ(
β

k (9)

3i
γ = dciγ + ciβ1

β
γ − ckγ2

i
k − ckγ c

i
β(

β

k (10)

4α
iβ = df αiβ + f αiγ1

γ

β + gαij3
j

β − f
γ

iβ

(
1α
γ − ckεf

α
kγ%

ε + f αkγ &
k + ckγ g

α
kj&

j − ckγ(
α
k

)
+ f αkβ

(
2k
i + ckγ(

γ

i

)
+ ckβf

α
kγ(

γ

i (11)

5α
ij = dgαij + gαik2

k
j + gαjk2

k
i − f αiβ(

β

j − f αjβ(
β

i − g
γ

ij

(
1α
γ − ckβf

α
kγ %

β

+ f αkγ&
k + ckγ g

α
ks&

s − ckγ(
α
k

)
. (12)

We note that the conditions (4) imply

5α
ij = 5α

ji . (13)

Thus the specifications (3) and (4) of the group parameters of the coframe (2) give the lifted
coframe

%α = aαβ
(
duβ − p

β

j dxj
)

(14)

&i = ciβ%
β + bij dxj (15)

(α
i = f αiβ%

β + gαij&
j + aαβB

j

i dpβj (16)

on J 1(E)× H, where H is the subgroup of the group G defined by the equalities (3) and (4).
The structure equations (7) and (8) do not contain any torsion coefficient, while the structure
equations (5) contain only constant torsion coefficients.

The structure equations (5), (7) and (8) remain unchanged if we make the following
change of the modified Maurer–Cartan forms1α

β , 2i
k, 3

i
γ , 4α

iβ , 5α
ij :

1α
β 
→1α

β +Kα
βγ%

γ

2i
k 
→2i

k + Likj&
j +Mi

kγ%
γ

3i
γ 
→3i

γ +Mi
kγ&

k +Ni
γε%

ε

4α
iβ 
→4α

iβ + Pαiβγ%
γ +Qα

iβk&
k +Kα

γβ(
γ

i −Mk
iβ(

α
k

5α
ij 
→5α

ij +Qα
iβj%

β + Rαijk&
k − Lkij(

α
k
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where Kα
γε , L

i
kj , M

i
kγ , Ni

γε , P
α
iβγ , Qα

iβk , R
α
ijk are arbitrary functions on J 1(E) × H satisfying

the following symmetry conditions:

Kα
γε = Kα

εγ Likj = Lijk Ni
γ ε = Ni

εγ
(17)

Pαiβγ = Pαiγβ Qα
iβk = Qα

kβi Rαijk = Rαikj = Rαjik.

Their number

r(1) = 1
2q

2(q + 1) + 1
2n

2(n + 1) + n2q + 1
2nq(q + 1) + 1

2nq
2(q + 1)

+ 1
2nq

2(n + 1) + 1
6qn(n + 1)(n + 2)

is the degree of indeterminancy, [20, definition 11.2], of the lifted coframe%α, &i , (α
i .

Using conditions (13), it is not hard to compute the reduced characters, [20, definition
11.4], of this coframe: s′1 = s′2 = · · · = s′q = q + n + nq , s′q+1 = n + nq , s ′q+2 = n + (n− 1)q ,
s′q+2 = n+ (n− 2)q , . . . , s′q+n−1 = n+ 2q , s′q+n = n+ q , s′q+n+1 = s′q+n+2 = · · · = s′q+n+nq = 0.
It is easy to verify that the Cartan test

r(1) = s′1 + 2s′2 + 3s′3 + · · · + (q + n + nq)s′q+n+nq

is satisfied, so by definition 11.7 of [20] the lifted coframe (14), (15), (16) is involutive,
and by theorem 11.16 of [20], since the last non-zero reduced character s′q+n is equal to
q + n, the transformations of the invariance pseudo-group of this coframe depend on q + n
functions of q +n variables, as it should be. It is easy to directly verify that the transformation
ϒ : J 1(E)× H → J 1(E)× H satisfies the conditions

ϒ∗%̄α = %α ϒ∗&̄i = &i ϒ∗(̄α
i = (α

i (18)

if and only if it is projectable on J 1(E) and its projection� : J 1(E) → J 1(E),� : (x, u, p) 
→
(x̄, ū, p̄), is the prolongation of the transformation � : E → E , � : (x, u) 
→ (x̄, ū), such that
conditions (1) are satisfied. Thus the equalities (18) really define the pseudo-group of contact
transformations on J 1(E), when q > 1 and n > 1.

Since the forms %α , &i , (α
i are preserved by the pseudo-group transformations, their

exterior differentials are also preserved, so ϒ∗ d%̄α = d%α, ϒ∗ d&̄i = d&i , ϒ∗ d(̄α
i = d(α

i ;
therefore we have

ϒ∗ (1̄α
β ∧ %̄β + &̄k ∧ (̄α

k

) = (
ϒ∗1̄α

β

) ∧%β +&k ∧(α
k = 1α

β ∧%β +&k ∧(α
k

ϒ∗ (2̄i
k ∧ &̄k + 3̄i

γ ∧ %̄γ
) = (

ϒ∗2̄i
k

) ∧&k +
(
ϒ∗3̄i

γ

) ∧%γ = 2i
k ∧&k +3i

γ ∧%γ

ϒ∗ (1̄α
γ ∧ (̄γ

i − 2̄k
i ∧ (̄α

k + 4̄α
iβ ∧ %̄β + 5̄α

ij ∧ &̄j)
= (

ϒ∗1̄α
γ

) ∧(γ

i − (
ϒ∗2̄k

i

) ∧(α
k +

(
ϒ∗4̄α

iβ

) ∧%β +
(
ϒ∗5̄α

ij

) ∧&j
= 1α

γ ∧(γ

i −2k
i ∧(α

k +4α
iβ ∧%β +5α

ij ∧&j

and thus

ϒ∗1̄α
β = 1α

β +Kα
βγ%

γ

ϒ∗2̄i
k = 2i

k + Likj&
j +Mi

kγ%
γ

ϒ∗3̄i
γ = 3i

γ +Mi
kγ&

k +Ni
γε%

ε (19)

ϒ∗4̄α
iβ = 4α

iβ + Pαiβγ %
γ +Qα

iβk&
k +Kα

γβ(
γ

i −Mk
iβ(

α
k

ϒ∗5̄α
ij = 5α

ij +Qα
iβj%

β + Rαijk&
k − Lkij(

α
k

for some functions Kα
γε , L

i
kj , Mi

kγ , Ni
γε , P

α
iβγ , Qα

iβk , R
α
ijk on J 1(E) × H satisfying

conditions (17).
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3. Symmetries of differential equations

For application of the moving coframe method, [10, 11], to the problem of finding symmetries
of a system of DEs R1, we restrict the lifted coframe (14), (15), (16) on R1. That is, we
consider the set of 1-forms θα = ι∗%α , ξ i = ι∗&i , σαi = ι∗(α

i , where ι : R1 → J 1(E)
is the embedding (for brevity we identify the map ι × id : R1 × H → J 1(E) × H with
ι : R1 → J 1(E)). The 1-forms θα , ξ i , σαi are linearly dependent, i.e. there exists a non-trivial
set of functions Uα , Vi , Wi

α on R1 × H, such that Uαθα + Viξ i +Wi
ασ

α
i ≡ 0.

Setting these functions equal to some constants allows one to express a part of the
parameters aαβ , bij , c

i
β , f αiβ , gαij of the group H as functions of coordinates of R1 and other

group parameters. Substitution of the obtained values of the parameters into the modified
Maurer–Cartan forms φαβ = ι∗1α

β , ψi
k = ι∗2i

k, π
i
β = ι∗3i

β , λαiβ = ι∗4α
iβ , ωαij = ι∗5α

ij makes
a part of these forms, or their linear combinations, independent of all differentials of the
group parameters. Since the transformation ϒ∗ changes the forms 1α

β , 2i
k, 3

i
β by the rules

(19), in the case when the obtained form φαβ does not depend on all differentials of the group
parameters, its coefficients at σγj and ξj are lifted invariants of the pseudo-group, and if the
obtained forms ψi

k or πiβ are independent of all differentials of the group parameters, their
coefficients at σγj are also lifted invariants. Normalizing these lifted invariants to be constants
allows us to express a part of the group parameters as functions of coordinates on R1 and
other group parameters. If not all group parameters are expressed, we should substitute the
expressed parameters into the forms φαβ , ψi

k , π
i
γ , which depend on their differentials, and

repeat the process. If the process is completed, but not all group parameters are expressed as
functions on R1, we should substitute the modified Maurer–Cartan forms φαβ , ψi

k , π
i
γ , λαiβ , ωαij ,

which were reduced during the process of normalization, into the reduced structure equations

dθα = φαβ ∧ θβ + ξk ∧ σαk
dξ i = ψi

k ∧ ξk + πiγ ∧ θγ
dσαi = φαγ ∧ σγi − ψk

i ∧ σαk + λαiβ ∧ θβ + ωαij ∧ ξj .
If the essential torsion coefficients dependent on the group parameters appear, then we should
normalize them to constants and find some new part of the group parameters, which, on being
substituted into the reduced modified Maurer–Cartan forms, allows us to repeat the procedure
of normalization. There are two possible results of this process. The first result, when the
reduced lifted coframe appears to be involutive, outputs the desired set of invariant 1-forms
which characterize the pseudo-group Lie(R1). In the second result, when the coframe is not
involutive, we should apply the procedure of prolongation [20, ch 12].

3.1. Example 1: Burgers’ equation

For the application of the above method to finding invariant 1-forms of the symmetry group
admitted by Burgers’ equation

ut = uxx + uux

we take the equivalent system of first order

ux = v vx = ut − uv.

Denoting x = x1, t = x2, v = u1, u = u2, vx = p1
1, vt = p1

2, ux = p2
1, ut = p2

2, we consider
this system as a sub-bundle of the bundle J 1(E), E = R

2 × R
2 → R

2, with local coordinates{
x1, x2, u1, u2, p1

1, p
1
2, p

2
1, p

2
2

}
, where the embedding ι is defined by the equalities

p1
1 = p2

2 − u1u2 p2
1 = u1.
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The forms θα = ι∗%α, α ∈ {1, 2}, ξ i = ι∗&i , i ∈ {1, 2}, are linearly independent, whereas
the forms σαi = ι∗(α

i are linearly dependent. The group parameters aαβ , bij must satisfy the
conditions det

(
aαβ
) �= 0, det

(
bij
) �= 0. Moreover, without loss of generality, we can consider

that a1
1 �= 0, a2

2 �= 0, b1
1 �= 0, b2

2 �= 0. Computing the linear dependence conditions of forms
σαi by means of MAPLE, we find sequentially the group parameters a2

1, b2
1, b2

2, g2
12, g2

11,
g1

11, f 2
12, f 2

11, g2
22, f 2

22, f 2
211 as functions of other group parameters and the local coordinates{

x1, x2, u1, u2, p1
2, p

2
2

}
of R1. Particularly,

a2
1 = 0 b2

1 = 0 b2
2 = b1

1a
2
2

a1
1

g2
12 = −

(−p2
2b

1
2 + u1u2b1

2 + p1
2b

1
1

)
a1

1(
b1

1

)3

g2
11 = −a

2
2

(
p2

2 − u1u2
)

(
b1

1

)2 g1
11 = (u1)2a1

1 − a1
2p

2
2 − a1

1p
1
2 − u1(u2)2a1

1 + p2
2a

1
1u

2 + u1u2a1
2(

b1
1

)2

f 2
12 =

(
b1

1

)2
a1

2 +p1
2

(
a1

1

)2
c2

2b
1
1 +u1u2

(
a1

1

)2
b1

2c
2
2 − u1u2a2

2c
1
2b

1
1a

1
1 − p2

2

(
a1

1

)2
b1

2c
2
2 + p2

2a
2
2c

1
2b

1
1a

1
1(

b1
1

)3
a1

1

f 2
11 = −

u1u2
(
c1

1a
2
2b

1
1a

1
1 −(a1

1

)2
b1

2c
2
1

)
−p2

2c
1
1a

2
2b

1
1a

1
1 +p2

2

(
a1

1

)2
b1

2c
2
1−p1

2

(
a1

1

)2
c2

1b
1
1 + a2

2

(
b1

1

)2

(
b1

1

)3
a1

1

while the expressions for g2
22, f 2

22 and f 2
21 are too long to be written out in full here.

The linear dependences between the forms σαi are σ 1
1 = σ 2

2 and σ 2
1 = 0.

The analysis of the modified Maurer—Cartan forms φαβ , ψi
k , π

i
γ at the obtained values of

the group parameters gives the following normalizations:

φ2
1 ≡ c2

1σ
2
2 +

a2
2

b1
1a

1
1

ξ1
(
mod θ1, θ2, ξ2, σ 1

2

) ⇒ c2
1 = 0 b1

1 = a2
2

a1
1

ψ2
2 − 2ψ1

1 = (
2c1

1 − c2
2

)
σ 1

2 ⇒ c2
2 = 2c1

1

ψ1
1 + φ1

1 − φ2
2 ≡ −2c1

1σ
2
2

(
mod θ1, θ2, ξ1, ξ2, σ 1

2

) ⇒ c1
1 = 0

φ2
1 ≡ −

(
f 1

11 +
a1

2a
2
2 − a1

1a
2
2u

2 + b1
2

(
a1

1

)2

a2
2

)
ξ2
(
mod θ1, θ2, ξ1, σ 1

2 , σ
2
2

)

⇒ f 1
11 = −a

1
2a

2
2 − a1

1a
2
2u

2 + b1
2

(
a1

1

)2

a2
2

.

Now the analysis of the structure equations gives, step by step, the following essential
torsion coefficients and the corresponding normalizations:

dθ1 = −c1
2θ

2 ∧ σ 2
2 + · · · ⇒ c1

2 = 0

dθ1 =
((
a2

2

)3
f 1

12 − (
a1

2

)2
a2

2 + a1
1a

1
2a

2
2u

2 − (
a1

1

)2
a1

2b
1
2

)
θ2 ∧ ξ1 +

(
f 1

22 +
a1

2

a2
2

f 1
21

)
θ2 ∧ ξ2 + · · ·

⇒ f 1
12 =

a1
2

(
a1

2a
2
2 − a1

1a
1
2a

2
2u

2 +
(
a1

1

)2
a1

2b
1
2

)
(
a2

2

)3 f 1
22 = −a

1
2

a2
2

f 1
21

dξ2 =
2
(

2a1
2a

2
2 − a1

1a
2
2u

2 + b1
2

(
a1

1

)2
)

(
a2

2

)2 ξ1 ∧ ξ2 + · · · ⇒ a1
2 = a1

1

(
a2

2u
2 − b1

2a
1
1

)
2a2

2
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dξ1 =

f 2

21 +

(
a1

1

)2
(

4
(
a2

2

)2
u1 − 2a2

2b
1
2a

1
1u

2 +
(
a2

2

)2
(u2)2 +

(
b1

2

)2 (
a1

1

)2
)

(
a2

2

)4


 ξ1 ∧ ξ2 + · · ·

⇒ f 2
21 = −

(
a1

1

)2
(

4
(
a2

2

)2
u1 − 2a2

2b
1
2a

1
1u

2 +
(
a2

2

)2
(u2)2 +

(
b1

2

)2 (
a1

1

)2
)

(
a2

2

)4

dσ 1
2 = −

(
a1

1

)2 (
b1

2a
1
1 − a2

2u
2
)

(
a2

2

)4 θ1 ∧ θ2 + · · · ⇒ b1
2 = a2

2u
2

a1
1

dσ 2
2 =

(
a1

1

)3 (
p2

2 − u1u2
)

(
a2

2

)3 θ2 ∧ ξ1 + · · · ⇒ a2
2 = a1

1(
p2

2 − u1u2
)1/3

dθ2 = 1

3a1
1

(
p2

2 − u1u2
)2/3 θ

2 ∧ σ 2
2 + · · · ⇒ a1

1 = 1(
p2

2 − u1u2
)2/3

dθ1 = −
(

2g1
12

3
+

2u1(
p2

2 − u1u2
)2/3

)
θ1 ∧ ξ2 + · · · ⇒ g1

12 = − 3u1(
p2

2 − u1u2
)2/3

dσ 2
2 =


−g1

22 +
2
(
−2

(
p2

2

)2
+ 7u1u2p2

2 − 5(u1u2)2 + 2(u1)3 − 3u1p1
2

)
(
p2

2 − u1u2
)2


 ξ1 ∧ ξ2 + · · ·

⇒ g1
22 =

2
(
−2

(
p2

2

)2
+ 7u1u2p2

2 − 5(u1u2)2 + 2(u1)3 − 3u1p1
2

)
(
p2

2 − u1u2
)2 .

Thus all the group parameters are expressed as functions of the local coordinates{
x1, x2, u1, u2, p1

2, p
2
2

}
of the equation R1. The result of all normalizations is the invariant

coframe

θ1 = du1 − (
p2

2 − u1u2
)

dx1 − p1
2 dx2(

p2
2 − u1u2

)2/3

θ2 = du2 − u1 dx1 − p2
2 dx2(

p2
2 − u1u2

)1/3

ξ1 = (
p2

2 − u1u2)1/3
(dx1 + u2 dx2)

ξ2 = (
p2

2 − u1u2
)2/3

dx2

σ 1
2 = dp1

2 − u2 dp2
2 + ((u2)2 − 2u1) du1 + u1u2 du2(

p2
2 − u1u2

)4/3

+
u1
(
p2

2 − u1u2
)

dx1 +
(

4(u1)3 − 7(u1u2)2 + 11u1u2p2
2 − 4u1p1

2 − 4
(
p2

2

)2
)

dx2(
p2

2 − u1u2
)4/3

σ 2
2 = dp2

2 − u2 du1 − u1 du2 − (
p1

2 + u1(u2)2 − (u1)2 − u2p2
2

)
dx1

p2
2 − u1u2

+

(
4(u1)2u2 + (u2)2p2

2 − u1(u2)3 − u2p − 3u1p2
2

)
dx2

p2
2 − u1u2

.
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Its structure equations are

dθ1 = Iθ1 ∧ ξ1 + 2
3θ

1 ∧ σ 2
2 + ξ1 ∧ σ 2

2 + ξ2 ∧ σ 1
2

dθ2 = −θ1 ∧ ξ1 + 1
2Iθ

2 ∧ ξ1 + 1
3θ

2 ∧ σ 2
2 + ξ2 ∧ σ 2

2

dξ1 = θ2 ∧ ξ2 − 1
3ξ

1 ∧ σ 2
2

dξ2 = Iξ1 ∧ ξ2 − 2
3ξ

2 ∧ σ 2
2

dσ 1
2 = −θ1 ∧ ξ1 − 6Iθ1 ∧ ξ2 − 3

2Iθ
2 ∧ ξ1 − θ2 ∧ σ 2

2 − 15Iξ1 ∧ ξ2

− 2Iξ1 ∧ σ 1
2 + 7ξ2 ∧ σ 2

2 + 4
3σ

1
2 ∧ σ 2

2

dσ 2
2 = −3θ1 ∧ ξ2 + θ2 ∧ ξ1 − 3

2Iθ
2 ∧ ξ2 + ξ1 ∧ σ 1

2 − 3
2Iξ

1 ∧ σ 2
2

where the only invariant I has the form

I = 2
(
p1

2 + u1(u2)2 − (u1)2 − u2p2
2

)
3
(
p2

2 − u1u2
)4/3 .

Taking its exterior differential, we obtain

dI = − 2
3θ

2 − 2I 2ξ1 + 2ξ2 + 2
3σ

1
2 − 4

3Iσ
2
2

so all derived invariants of the group are functionally expressed as functions of I. Therefore
the rank of the coframe, [20, proposition 8.18], is equal to 1, and, by theorem 8.22 of [20], its
symmetry group is five-dimensional (as it should be; for full details of finding infinitesimal
generators of this group by Lie’s method see, e.g., [30, ch 3, section 5].)

3.2. Example 2: one-dimensional equations of gas dynamics in Lagrange coordinates

One-dimensional dynamics of polytropic gas in Lagrange coordinates is described [26], by
the system of DEs

ρt + ρ2um = 0 ut + pm = 0 pt + γρpum = 0. (20)

Denoting ρ = u1, u = u2, p = u3, t = x1, m = x2 and using the above method, we obtain
the invariant coframe of the symmetry group of the system (20)

θ1 = 1

u1

(
du1 + (u1)2p2

2 dx1 − p1
2 dx2)

θ2 =
√
u1

γ u3

(
du2 + p3

2 dx1 − p2
2 dx2

)
θ3 = 1

γ u3

(
du3 + γ u1u3p2

2 dx1 − p3
2 dx2)

ξ1 =
√
u1

γ u3
dx2

ξ2 = u1p2
2 dx1 (21)

σ 1
2 = 1

u1p2
2

√
γ u3

u1

(
dp1

2 − p1
2

u1
du1 − (γ − 1)(u1)3

(
p2

2

)2
u3 − (

p1
2

)2
(u3)2 − (

p3
2

)2
(u1)2

2u1(u3)2
dx2

)

σ 2
2 = 1

u1p2
2

(
dp2

2 +
γ − 1

2
(u1)2

(
p2

2

)2
dx1 + p1

2p
2
2 dx2

)

σ 3
2 = 1

p2
2

√
γ u1u3

(
dp3

2 + γ u1p2
2p

3
2 dx1 − γ − 1

2
u1 (p2

2

)2
dx2

)
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(since from the physical meaning we have u1 = ρ > 0 and u3 = p > 0; therefore there is no
need to worry about the signs of the expressions under the square roots).

The structure equations of this coframe are

dθ1 = θ1 ∧ ξ2 + ξ1 ∧ σ 1
2 − ξ2 ∧ σ 2

2

dθ2 = 1
2θ

1 ∧ θ2 + γ

2 θ
2 ∧ θ3 + I1θ

2 ∧ ξ1 + γ−1
2 θ2 ∧ ξ2 + ξ1 ∧ σ 2

2 − ξ2 ∧ σ 3
2

dθ3 = θ1 ∧ ξ2 + I2θ
3 ∧ ξ1 + ξ1 ∧ σ 3

2 − ξ2 ∧ σ 2
2

dξ1 = 1
2θ

1 ∧ ξ1 − γ

2 θ
3 ∧ ξ1 − ξ1 ∧ σ 2

2

dξ2 = θ1 ∧ ξ2 − ξ2 ∧ σ 2
2

dσ 1
2 = 1

2γ (γ − 1)θ1 ∧ ξ1 − 1
2θ

1 ∧ σ 1
2 − 1

2

(
2I 2

2 − γ 2 + γ
)
θ3 ∧ ξ1 + γ

2 θ
3 ∧ σ 1

2

+ I1ξ
1 ∧ σ 1

2 + γ (γ − 1)ξ1 ∧ σ 2
2 − γ I2ξ

1 ∧ σ 3
2 + σ 1

2 ∧ σ 2
2

dσ 2
2 = γ−1

2 θ1 ∧ ξ2 − ξ1 ∧ σ 1
2 − γ−1

2 ξ2 ∧ σ 2
2

dσ 3
2 = − γ−1

2 θ1 ∧ ξ1 + I2θ
1 ∧ ξ2 − 1

2θ
1 ∧ σ 3

2 − γ

2 θ
3 ∧ σ 3

2 + (γ − 1)ξ1 ∧ σ 2
2

− I1ξ
1 ∧ σ 3

2 − I2ξ
2 ∧ σ 2

2 − σ 2
2 ∧ σ 3

2 .

The invariants I1 and I2 are defined by the equalities

I1 =
√
γ u1

u3

p3
2u

1 − p1
2u

3

2(u1)2p2
2

I2 =
√

γ

u1u3

p3
2

p2
2

.

Their exterior differentials are

dI1 = −I1

2
θ1 +

γ

2
(I1 − I2)θ

3 +
1

2
σ 1

2 − I1σ
2
2 +

γ

2
σ 3

2

dI2 = −I2

2
θ1 + γ

(
I1 − I2

2

)
θ2 +

(
γ (γ − 1)

2
− I1I2

)
ξ1 − I2σ

1
2 + γ σ 3

2

so all derived invariants of the symmetry group depend functionally on I1 and I2. Thus the
coframe (21) has rank 2, and the symmetry group of the system (20) is six-dimensional. In
[2, ch 3] the explicit form of the infinitesimal generators of this group is given.

3.3. Example 3: Liouville’s equation

For finding invariant 1-forms and structure equations of the symmetry pseudo-group of
Liouville’s equation

utx = eu

we take the equivalent system of first order

ut = v vx = eu.

Using the notations u = u1, v = u2, t = x1, x = x2 and applying the above procedure of
absorption and normalization, we have σ 1

1 = 0, σ 2
2 = 0, while θ1, θ2, ξ1, ξ2, σ 1

2 and σ 2
1

constitute the lifted coframe

θ1 = du1 − u2 dx1 − p1
2 dx2

θ2 = a2
2

(
du2 − p2

1 dx1 − exp(u1) dx2)
ξ1 = (

a2
2

)−1
dx1

(22)
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ξ2 = a2
2 exp(u1) dx2

σ 1
2 = (

a2
2

)−1
exp(−u1) dp1

2 − (
a2

2

)−1
dx1 + a2

2g
1
22 exp(u1) dx2

σ 2
1 = (

a2
2

)2
(

dp2
1 − u2 du2 +

((
a2

2

)−3
g2

11 + u2p2
1

)
dx1

)
.

The exterior differentials of these forms are

dθ1 = −θ2 ∧ ξ1 + ξ1 ∧ σ 1
2

dθ2 = χ1 ∧ θ2 − θ1 ∧ ξ2 + ξ1 ∧ σ 2
1

dξ1 = −χ1 ∧ ξ1

(23)
dξ2 = χ1 ∧ ξ2 + θ1 ∧ ξ2

dσ 1
2 = χ2 ∧ ξ2 − χ1 ∧ σ 1

2 − θ1 ∧ (σ 1
2 + ξ1

)
dσ 2

1 = χ3 ∧ ξ1 + 2χ1 ∧ σ 2
1

where

χ1 = (
a2

2

)−1
da2

2 + a2
2u

2ξ1

χ2 = dg1
22 + 2g1

22(χ1 + θ1) +
(
a2

2

)−1
exp(−u1)p1

2

(
ξ1 − σ 1

2

)
+w1ξ

2 (24)

χ3 = dg2
11 − 3g2

11χ1 +
(
a2

2

)2 (
p2

1 + (u2)2
)
(θ2 + ξ2) + 3a2

2u
2σ 2

1 +w2ξ
1

w1 and w2 are free parameters. The structure equations (23) do not contain any torsion
coefficient depending on the group parameters. The coframe (22) is not involutive,
because its degree of indeterminancy r(1) is 2, whereas the reduced characters are s′1 = 3,
s′2 = · · · = s′6 = 0, so Cartan’s test is not satisfied. Therefore we should use the procedure
of prolongation [20, ch 12]. For this purpose we unite both coframes (22) and (24) into the
new base coframe, whereas w1 and w2 turn into the new group parameters. Finding exterior
differentials of χ1, χ2 and χ3, we have

dχ1 = θ2 ∧ ξ1 − ξ1 ∧ ξ2

dχ2 = ν1 ∧ ξ2 − 2θ1 ∧ χ1 − 2χ1 ∧ χ2 (25)

dχ3 = ν2 ∧ ξ1 + 2(θ2 + ξ2) ∧ σ 2
1 + 3χ1 ∧ χ2

where

ν1 = dw1 + 3w1
(
θ1 + χ1

)
+
((
a2

2

)−1
exp(−2u1)

(
p1

2

)2 − g1
22

) (
ξ1 + σ 1

2

)
− (
a2

2

)−1
exp(−u1)p1

2χ2

ν2 = dw2 + 4w2χ2 + 2
((
a2

2

)3
(u2)3 − g2

11

)
(θ2 + ξ2) + 2

(
a2

2

)2 (
(u2)2 − 2p2

1

)
σ 2

1 + 3a2
2u

2χ3.

The structure equations (25) admit the change

ν1 
→ ν1 + z1ξ
2 ν2 
→ ν2 + z2ξ

1

with the free parameters z1 and z2. So the degree of indeterminancy of the coframe (22),
(24) is r(1) = 2 again, while the reduced characters now are s′1 = 2, s′2 = · · · = s′9 = 0.
Cartan’s test is therefore satisfied, and the coframe (22), (24) is involutive. Since the last
non-zero reduced character is s′1 = 2, the symmetry pseudo-group transformations depend on
two arbitrary functions of one variable. This agrees with the result found by Lie [15, Bd. 3,
S. 469–478]. In [16, 17] the structure equations of this pseudo-group are obtained using a
different method; see also [25].



2976 O Morozov

4. Conclusion

We have demonstrated the possibility of applying the combination of Cartan’s equivalence
method and the moving coframe method to computing invariant 1-forms and structure
equations of symmetry pseudo-groups of DEs. The approach used here does not require finding
infinitesimal defining systems, analysis of their involutivity and integration and includes only
differentiation and linear algebra operations. So it is algorithmic in principle, although the
labyrinth of the corresponding computations is very intricate. Further work should be done
to reduce the complexity of computations by means of using invariant 1-forms which define
contact transformations on bundles of higher order jets, see [21].
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Gauthier-Villars) pp 571–714
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